Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Total Environ ; 913: 169641, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159765

RESUMO

This study investigated the fate of phosphorus (P) in 8 full-scale municipal wastewater treatment plants (WWTPs) in Shanghai, China, in which both biological nutrient removal and aluminum-based chemical phosphorus removal were used. The results showed that 83.8-98.9 % P was transferred to the sludge in the 8 WWTPs by both chemical and biological reactions. P speciation analysis indicated that chemical P precipitates accounted for 84.3 % in the activated sludge, of which crystalline AlPO4 and amorphous iron­phosphorus compounds (FePs) were the main components. Sludge with more water-soluble and weakly adsorbed P was generated in the anaerobic-anoxic-oxic (A/A/O) process than in other processes. Among the 8 WWTPs, the one with the largest flow rate and relatively short sludge retention time (SRT) had the best potential to release P from all types of sludge. The recovery potential of P from thickened sludge can be improved by separately thickening the sludge produced in the high-efficiency sedimentation tank or feeding it into the dewatering process directly. Different P removal chemicals and dosing points changed the amount of chemical precipitate formed but had little effect on the composition of P accumulating organisms (PAOs) at the genus level. Although aluminum-based coagulants were applied in the investigated WWTPs, Fe in wastewater had the most positive effect on the proliferation of PAOs. The synthesis of polyphosphate was also related to the metabolism of PAOs as it affected transmembrane inorganic phosphate (Pi) transport and polyhydroxybutyrate (PHB) synthesis. The in-depth understanding of the fate of P is beneficial to improve P recovery efficiency in WWTPs.


Assuntos
Esgotos , Purificação da Água , Esgotos/química , Fósforo/análise , Alumínio/análise , Sais , China , Polifosfatos/análise , Reatores Biológicos , Anticorpos , Eliminação de Resíduos Líquidos/métodos
2.
Electrophoresis ; 44(15-16): 1197-1205, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37353918

RESUMO

Polyacrylamide gel electrophoresis is commonly used to characterize the chain length of polyphosphates (polyP), more generally called condensed phosphates. After separation, nonradioactive, optical polyP staining is limited to chain lengths greater than 15 PO 3 - ${\rm{PO}}_3^ - $ monomers with toluidine blue or 4',6-diamidino-2-phenylindole. PolyP chain lengths longer than 62 PO 3 - $\;{\rm{PO}}_3^ - $ monomers were correlated to the shortest DNA ladders. In this study, synthetic linear polyPs (Sigma-Aldrich "Type 45", estimated mean length of 45 PO 3 - ${\rm{PO}}_3^ - $ monomers), trimetaphosphate (trimetaP: 3 PO 3 - ${\rm{PO}}_3^ - $ ring), tripolyphosphate (tripolyP), pyrophosphate (PPi ), and inorganic orthophosphate (o-Pi ) were visualized after separation by an in situ hydrolytic degradation process to o-Pi that was subsequently stained with methyl green. Statistically insignificant migration reduction of synthetic short-chain polyP after perchloric acid or phenol-chloroform extraction was confirmed with the Friedman test. 31 P diffusion-ordered NMR spectroscopy confirmed that extraction also reduced PPi diffusivity by <10%. Linear regression between the Rf peak migration value and the logarithm of synthetic polyP molecular weights enabled estimation of extracted polyP chain lengths from 2 to 45 PO 3 - ${\rm{PO}}_3^ - $ monomers. Linear polyP extracts from Saccharomyces cerevisiae grown in aerobic conditions were generally shorter than extracts cultured in anaerobic conditions. Extractions from both aerobic and anaerobic S. cerevisiae included tripolyP and o-Pi , but no PPi .


Assuntos
Polifosfatos , Saccharomyces cerevisiae , Polifosfatos/análise , Eletroforese em Gel de Poliacrilamida , Extratos Vegetais/metabolismo
3.
Microb Ecol ; 85(2): 478-494, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35157108

RESUMO

Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.


Assuntos
Microbiota , Áreas Alagadas , Polifosfatos/análise , Polifosfatos/metabolismo , Filogenia , Espécies Introduzidas , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae , Enxofre/metabolismo , Sulfatos/metabolismo , China
4.
J Eukaryot Microbiol ; 69(6): e12899, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35191563

RESUMO

Acidocalcisomes are electron-dense organelles rich in polyphosphate and inorganic and organic cations that are acidified by proton pumps, and possess several channels, pumps, and transporters. They are present in bacteria and eukaryotes and have been studied in greater detail in trypanosomatids. Biogenesis studies of trypanosomatid acidocalcisomes found that they share properties with lysosome-related organelles of animal cells. In addition to their described roles in autophagy, cation and phosphorus storage, osmoregulation, pH homeostasis, and pathogenesis, recent studies have defined the role of these organelles in phosphate utilization, calcium ion (Ca2+ ) signaling, and bioenergetics, and will be the main subject of this review.


Assuntos
Cálcio , Organelas , Animais , Eucariotos , Polifosfatos/análise , Fósforo
5.
Chemosphere ; 258: 127230, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32535439

RESUMO

The design of new wastewater treatment plants with the aim of capturing organic matter for energy recovery is a current focus of research. Operating with low sludge residence time (SRT) appears to be a key factor in maximizing organic matter recovery. In these new configurations, it is assumed that phosphorus is chemically removed in a tertiary step, but the integration of enhanced biological phosphorus removal (EBPR) into these short-SRT systems seems to be an alternative worth studying. A key point of this integration is to prevent the washout of polyphosphate accumulating organisms (PAO) despite the low SRT applied. However, the minimum SRT required to avoid PAO washout depends on temperature, due to its effects on reaction kinetics, gas transfer rates, biomass growth and decay rates. This work includes a wide range of short and long-term experiments to understand these interactions and shows which combinations of SRT and temperature are detrimental to PAO growth. For example, an EBPR system operating at 20 °C and SRT = 5 d showed good performance, but EBPR activity was lost at 10 °C. EBPR operated at SRT = 10 d had 86% P removal at 20 °C but decreased to 71% at 15 °C and progressively lost its activity at lower temperature. The temperature coefficient obtained for PAO show a low degree of temperature dependence (θ = 1.047 ± 0.014), and should be considered when designing short-SRT systems with EBPR.


Assuntos
Fósforo/análise , Polifosfatos/análise , Esgotos/microbiologia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anaerobiose , Reatores Biológicos , Cinética , Temperatura , Fatores de Tempo
6.
Chemosphere ; 255: 127010, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32416397

RESUMO

The present work demonstrated the invention of synergistically strengthen of chemical and biological removal of phosphorus (P) in biological wastewater treatment, which was achieved by exposure the bioreactors to different levels of La-based-adsorbents. We fabricated a high-performance La2O2CO3 micro-adsorbent (H-La2O2CO3) and added it into sequencing batch reactors. When activated sludge was exposed to 40 mg/L H-La2O2CO3 for 40 d, effluent total phosphorus (TP) concentration significantly decreased to approximately 0.18 mg/L, with the steady removal efficiency of 96.4%, which is superior to the biological phosphorus removal (BPR). The effect of H-La2O2CO3 dosages on P removal in biological wastewater treatment was also detailedly investigated. The H-La2O2CO3 adsorbent could not only capture P by chemical bonding itself, but also increased protein (PN) contents of extracellular polymeric substances (EPS) and changed the functional group of EPS to chemically adsorb P. Additionally, the results of 16s rDNA molecular analysis revealed that the species richness and microbial diversity varied with the different dosages of adsorbent. Sequence analyses showed that the appropriate concentration of H-La2O2CO3 addition increased the contents of several polyphosphate accumulating organisms (PAOs) at genus level in sludge.


Assuntos
Reatores Biológicos/microbiologia , Carbonatos/química , Lantânio/química , Fósforo/análise , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Microbiota/efeitos dos fármacos , Polifosfatos/análise , RNA Ribossômico 16S , Esgotos/microbiologia , Águas Residuárias/microbiologia
7.
Anal Chem ; 92(6): 4167-4176, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32039586

RESUMO

Inorganic polyphosphate (polyP) is the polymer of orthophosphate and can be found in all living organisms. For polyP characterization, one or more of six parameters are of interest: the molecular structure (linear, cyclic, or branched), the concentration, the average chain length, the chain length distribution, the cellular localization, and the cation composition. Here, the merits, limitations, and critical parameters of the state-of-the-art methods for the analysis of the six parameters from the life sciences are discussed. With this contribution, we aim to lower the entry barrier into the analytics of polyP, a molecule with prominent, yet often incompletely understood, contributions to cellular function.


Assuntos
Disciplinas das Ciências Biológicas , Polifosfatos/análise , Cromatografia , Eletroforese , Espectroscopia de Ressonância Magnética , Microscopia , Estrutura Molecular , Fósforo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Metallomics ; 11(7): 1298-1309, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31210222

RESUMO

Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.


Assuntos
Complexos de Coordenação/análise , Polifosfatos/análise , Saccharomyces cerevisiae/química , Vacúolos/química , Cobre/análise , Ferro/análise , Manganês/análise , Fósforo/análise , Saccharomyces cerevisiae/citologia , Zinco/análise
9.
Food Res Int ; 120: 295-304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000242

RESUMO

Selenoamino acids (SeAAs) have been shown to possess antioxidant and anticancer properties. However, their bioaccessibility is low and they may be toxic above the recommended nutritional intake level, thus improved targeted oral delivery methods are desirable. In this work, the SeAAs, Methylselenocysteine (MSC) and selenocystine (SeCys2) were encapsulated into nanoparticles (NPs) using the mucoadhesive polymer chitosan (Cs), via ionotropic gelation with tripolyphosphate (TPP) and the NPs produced were then coated with zein (a maize derived prolamine rich protein). NPs with optimized physicochemical properties for oral delivery were obtained at a 6: 1 ratio of Cs:TPP, with a 1:0.75 mass ratio of Cs:zein coating (diameter ~260 nm, polydispersivity index ~0.2, zeta potential >30 mV). Scanning Electron Microscopy (SEM) analysis showed that spheroidal, well distributed particles were obtained. Encapsulation Efficiencies of 80.7% and 78.9% were achieved, respectively, for MSC and SeCys2 loaded NPs. Cytotoxicity studies of MSC loaded NPs showed no decrease in cellular viability in either Caco-2 (intestine) or HepG2 (liver) cells after 4 and 72 h exposures. For SeCys2 loaded NPs, although no cytotoxicity was observed in Caco-2 cells after 4 h, a significant reduction in cytotoxicity was observed, compared to pure SeCys2, across all test concentrations in HepG2 after 72 h exposure. Accelerated thermal stability testing of both loaded NPs indicated good stability under normal storage conditions. Lastly, after 6 h exposure to simulated gastrointestinal tract environments, the sustained release profile of the formulation showed that 62 ±â€¯8% and 69 ±â€¯4% of MSC and SeCys2, had been released from the NPs respectively.


Assuntos
Anticarcinógenos/análise , Antivirais/análise , Cistina/análise , Suplementos Nutricionais , Compostos Organosselênicos/análise , Selenocisteína/análise , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Cistina/análogos & derivados , Géis/química , Células Hep G2 , Humanos , Microscopia Eletrônica de Varredura , Nanopartículas/química , Tamanho da Partícula , Polifosfatos/análise , Selenocisteína/análogos & derivados , Zeína/química
10.
Ying Yong Sheng Tai Xue Bao ; 29(9): 2970-2978, 2018 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-30411573

RESUMO

Understanding the transformation of P in polyphosphate form in the soil and its effect on P availability is the prerequisite for reasonable polyphosphate fertilizer application. A pot experiment was conducted to explore the effects of polyphosphate fertilizers and MAP on soil available-P, inorganic P transformation in soils, soil micro-nutrient availabilities of Fe, Mn and Zn. Meanwhile, the effects of different P fertilizer on rape P nutrition and PUE in both calcareous and acid soils were investigated. Compared with the MAP treatment, polyphosphate fertilizers significantly increased plant available P concentrations in calcareous soil. Soil water soluble-P and Olsen-P were increased by 19.0% and 25.4%, respectively, and soil resin-P and NaHCO3-P (high labile P) and NaOH-P (medium labile P) increased by 22.8%, 43.3% and 33.8%, respectively. Those results implied that polyphosphate could reduce the fixation of P in calcareous soil. However, there was no significant effect of polyphosphate fertilization on improving P availability and reducing P fixation in acid soil. In comparison with MAP treatment, polyphosphate treatments significantly mobilized micronutrient in soils and increased the uptake of Fe, Mn and Zn by rape plants. In the calcareous soil, the available Fe, Mn, and Zn increased by 2.1%, 16.2% and 20.8%, respectively. In acid soil, the available Fe, Mn, and Zn increased by 6.6%, 11.9% and 9.2%, respectively. In addition, polypho-sphate treatments significantly increased dry mass, P uptake concentrations and P use efficiency (PUE) of rape in calcareous soil, but not in acid soil. In conclusion, polyphosphate fertilizer could significantly increase P availability and micronutrient availability, plant P nutrition and PUE, especially in calcareous soil. Thus, polyphosphate could be used as alternative of P source substituting the orthophosphate-based P fertilizer in calcareous soil.


Assuntos
Fertilizantes , Metais Pesados/química , Fósforo/metabolismo , Polifosfatos/química , Poluentes do Solo/química , Solo/química , Metais Pesados/análise , Plantas , Polifosfatos/análise , Poluentes do Solo/análise , Zinco
11.
Int. microbiol ; 19(3): 133-141, sept. 2016. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-162890

RESUMO

Phosphorus is a pivotal element in all biochemical systems: it serves to store metabolic energy as ATP, it forms the backbone of genetic material such as RNA and DNA, and it separates cells from the environment as phospholipids. In addition to this 'big hits', phosphorus has recently been shown to play an important role in other important processes such as cell cycle regulation. In the present review, we briefly summarize the biological processes in which phosphorus is involved in the yeast Saccharomyces cerevisiae before discussing our latest findings on the role of this element in the regulation of DNA replication in this eukaryotic model organism. We describe both the role of phosphorus in the regulation of G1 progression by means of the Cyclin Dependent Kinase (CDK) Pho85 and the stabilization of the cyclin Cln3, as well as the role of other molecule composed of phosphorus-the polyphosphate-in cell cycle progression, dNTP synthesis, and genome stability. Given the eminent role played by phosphorus in life, we outline the future of phosphorus in the context of one of the main challenges in human health: cancer treatment (AU)


No disponible


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Fósforo/fisiologia , Quinases Ciclina-Dependentes/fisiologia , Antineoplásicos/farmacologia , Polifosfatos/análise , Células Eucarióticas/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/análise
12.
Meat Sci ; 121: 127-134, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27310601

RESUMO

The effects of sodium tripolyphosphate (STPP), two sources of starch (potato starch: PS and rice starch: RS) and comminution degree (CD) on the technological, instrumental and sensory characteristics of reformed hams were studied using response surface methodology. Both starches reduced cook loss and decreased ham flavour intensity, but RS had stronger effects on instrumental measures of texture, while PS was associated with improved juiciness when low/no added STPP was included. Coarsely ground meat, processed 100% with the kidney plate was associated with slightly increased cook loss, reduced texture profile analysis parameters and a more intense ham flavour compared to the other treatment (80% ground with a kidney plate plus 20% with a 9mm plate). STPP was the sole factor affecting overall liking. If starch is included in the formulation, the standard level of STPP (0.3%) can be reduced by half with no increase in cook losses, but some decline in sensory quality cannot be avoided.


Assuntos
Manipulação de Alimentos , Produtos da Carne/análise , Oryza/química , Solanum tuberosum/química , Amido/análise , Paladar , Animais , Cor , Comportamento do Consumidor , Feminino , Humanos , Concentração de Íons de Hidrogênio , Polifosfatos/análise , Suínos
13.
Environ Sci Technol ; 49(14): 8595-601, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26114730

RESUMO

A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.


Assuntos
Desnitrificação , Modelos Teóricos , Óxido Nitroso/análise , Fósforo/isolamento & purificação , Intervalos de Confiança , Nitratos/análise , Nitritos/análise , Polifosfatos/análise
14.
Bioresour Technol ; 175: 325-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459839

RESUMO

The present work determines the effect of phosphorus content on phosphate uptake rate in a mixed culture of Chlorophyceae in which the genus Scenedesmus dominates. Phosphate uptake rate was determined in eighteen laboratory batch experiments, with samples taken from a progressively more P-starved culture in which a minimum P content of 0.11% (w/w) was achieved. The results obtained showed that the higher the internal biomass P content, the lower the phosphate removal rate. The highest specific phosphate removal rate was 6.5mgPO4-PgTSS(-1)h(-1). Microalgae with a P content around 1% (w/w) attained 10% of this highest removal rate, whereas those with a P content of 0.6% (w/w) presented 50% of the maximum removal rate. Different kinetic expressions were used to reproduce the experimental data. Best simulation results for the phosphate uptake process were obtained combining Steele equation and Hill function to represent the effect of light and intracellular phosphorus content, respectively.


Assuntos
Espaço Intracelular/química , Fosfatos/isolamento & purificação , Fósforo/farmacologia , Scenedesmus/metabolismo , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Cinética , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Modelos Teóricos , Polifosfatos/análise , Scenedesmus/efeitos dos fármacos
15.
Environ Sci Pollut Res Int ; 21(9): 6034-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464081

RESUMO

Previous researches have demonstrated that biological phosphorus removal (BPR) from wastewater could be driven by the aerobic/extended-idle (A/EI) regime. This study further investigated temperature effects on phosphorus removal performance in six A/EI sequencing batch reactors (SBRs) operated at temperatures ranging from 5 to 30 °C. The results showed that phosphorus removal efficiency increased with temperature increasing from 5 to 20 °C but slightly decreased when temperature continually increased to 30 °C. The highest phosphorus removal rate of 97.1 % was obtained at 20 °C. The biomass cultured at 20 °C contained more polyphosphate accumulating organisms (PAO) and less glycogen accumulating organisms (GAO) than that cultured at any other temperatures investigated. The mechanism studies revealed that temperature affected the transformations of glycogen and polyhydroxyalkanoates, and the activities of exopolyphosphatase and polyphosphate kinase activities. In addition, phosphorus removal performances of the A/EI and traditional anaerobic/oxic (A/O) SBRs were compared at 5 and 20 °C, respectively. The results showed the A/EI regime drove better phosphorus removal than the A/O regime at both 5 and 20 °C, and more PAO and less GAO abundances in the biomass might be the principal reason for the higher BPR in the A/EI SBRs as compared with the A/O SBRs.


Assuntos
Fósforo/metabolismo , Temperatura , Eliminação de Resíduos Líquidos/métodos , Hidrolases Anidrido Ácido/análise , Hidrolases Anidrido Ácido/metabolismo , Aerobiose , Reatores Biológicos/microbiologia , Glicogênio/análise , Glicogênio/metabolismo , Fósforo/análise , Poli-Hidroxialcanoatos/análise , Poli-Hidroxialcanoatos/metabolismo , Polifosfatos/análise , Polifosfatos/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia
17.
Water Res ; 47(6): 2025-32, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23415245

RESUMO

Phosphorus recovery from wastewaters and its recycling are of importance for sustaining agricultural production. During the conventional enhanced biological phosphorus removal process, phosphorus is removed by withdrawing excess sludge from wastewater. However, excess sludge disposal is costly and energy intensive. A proposed novel process for phosphorus recovery from sewage treatment will result in no excess sludge if a polyphosphate accumulating organisms (PAOs) enrichment biofilm can be applied to effluents containing phosphate. This process allows the recovery of phosphate as phosphate-concentrated solutions by controlling PAOs to absorb and release phosphate. A reactor consisting of a modified trickling filter with a synthetic substrate (5 mg P L⁻¹) was operated to form a PAO-enriched biofilm. As a result of the enrichment, the concentration of phosphate of >100 mg P L⁻¹ was successfully achieved. During this experiment, no sludge withdrawal was carried out over the duration of the operation of 255 days. To highlight the new process, the principle of enriching PAOs on biofilm and concentrating phosphate from treated sewage is explained, and a discussion on phosphate recovery performance is given.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Conservação dos Recursos Naturais/métodos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Fosfatos/isolamento & purificação , Águas Residuárias/química , Transporte Biológico , Filtração/instrumentação , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Japão , Concentração Osmolar , Fosfatos/análise , Fosfatos/química , Fosfatos/metabolismo , Fósforo/análise , Fósforo/química , Fósforo/isolamento & purificação , Fósforo/metabolismo , Polifosfatos/análise , Polifosfatos/química , Polifosfatos/isolamento & purificação , Polifosfatos/metabolismo , Esgotos/química , Esgotos/microbiologia , Solubilidade , Águas Residuárias/microbiologia , Purificação da Água/instrumentação
18.
Am J Dent ; 26(4): 201-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24693630

RESUMO

PURPOSE: To evaluate the effect of the addition of sodium trimetaphosphate (TMP) with or without fluoride on enamel demineralization, and the hardness and release of fluoride and TMP of resin composites. METHODS: Bovine enamel slabs (4 x 3 x 3 mm) were prepared and selected based on initial surface hardness (n = 96). Eight experimental resin composites were formulated, according to the combination of TMP and sodium fluoride (NaF): TMP/NaF-free (control), 1.6% sodium fluoride (NaF), and 1.5%, 14.1% and 36.8% TMP with and without 1.6% NaF. Resin composite specimens (n = 24) were attached to the enamel slabs with wax and the sets were subjected to pH cycling. Next, surface and cross-sectional hardness and fluoride content of enamel as well as fluoride and TMP release and hardness of the materials were evaluated. Data were statistically analyzed using ANOVA (P < 0.05). RESULTS: The presence of fluoride in enamel was similar in fluoridated resin composites (P > 0.05), but higher than in the other materials (P < 0.05). The combination of 14.1% TMP and fluoride resulted in less demineralization, especially on lesion surface (P < 0.05). The presence of TMP increased fluoride release from the materials and reduced their hardness.


Assuntos
Cariostáticos/farmacologia , Resinas Compostas/química , Esmalte Dentário/efeitos dos fármacos , Materiais Dentários/química , Polifosfatos/farmacologia , Fluoreto de Sódio/farmacologia , Desmineralização do Dente/fisiopatologia , Animais , Cariostáticos/análise , Cariostáticos/química , Bovinos , Esmalte Dentário/ultraestrutura , Difusão , Dureza , Concentração de Íons de Hidrogênio , Fósforo/análise , Polifosfatos/análise , Polifosfatos/química , Fluoreto de Sódio/análise , Fluoreto de Sódio/química , Fatores de Tempo , Desmineralização do Dente/patologia
19.
Curr Opin Biotechnol ; 23(6): 852-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22795053

RESUMO

In general, conventional P analysis methods suffer from not only the fastidious extraction and pre-treatment procedures required but also the generally low specificity and poor resolution regarding the P composition and its temporal and spatial dynamics. More powerful yet feasible P analysis tools are in demand to help elucidating the biochemistry nature, roles and dynamics of various phosphorus-containing molecules in vitro and in vivo. Recent advances in analytical chemistry, especially in molecular and atomic spectrometry such as NMR, Raman and X-ray techniques, have enabled unique capability of P analysis relevant to submicron scale biochemical processes in individual cell and in natural samples without introducing too complex and invasive pretreatment steps. Great potential still remains to be explored in wider and more combined and integrated requests of these techniques to allow for new possibilities and more powerful P analysis in biological systems. This review provides a comprehensive summary of the available methods and recent developments in analytical techniques and their applications for characterization and quantification of various forms of phosphorus, particularly polyphosphate, in different biological sources.


Assuntos
Técnicas de Química Analítica/métodos , Fósforo/análise , Produtos Biológicos/análise , Produtos Biológicos/química , Colorimetria , Humanos , Microscopia Eletrônica , Fósforo/química , Polifosfatos/análise , Polifosfatos/química , Análise Espectral
20.
Water Sci Technol ; 62(6): 1432-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20861560

RESUMO

We investigated the effect of pH reduction on polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in the enhanced biological phosphorus removal (EBPR) process. Three laboratory-scale EBPR reactors were used. Initially, the reactors were operated at pH 7.9±0.1 and 6.5±0.1, and after 27 days, the pH was lowered to 6.5±0.1 and 6.0±0.1, respectively. PAOs and GAOs were monitored using real-time quantitative polymerase chain reaction and/or fluorescent in situ hybridization. Phosphorus removal performance was also monitored. During the start-up period, high EBPR activity and increases in Candidatus 'Accumulibacter phosphatis' (Accumulibacter) and Candidatus 'Competibacter phosphatis' (Competibacter) were observed. In all runs, Accumulibacter and Competibacter were the dominant PAO and GAO, respectively. Accumulibacter began to decline 10-18 days after lowering the pH to 6.5±0.1. After lowering the pH to 6.0±0.1, the Accumulibacter population decreased immediately. Contrastingly, an obvious adverse effect of pH reduction on Competibacter was not observed. In all runs, EBPR activity began to deteriorate 6-12 days after Accumulibacter decline began. Thus, our results show that pH reduction had an immediate or delayed effect on Accumulibacter decline. Moreover, the time lag between the start of Accumulibacter decline and that of EBPR deterioration implies that EBPR deterioration by pH reduction went through unknown process.


Assuntos
Betaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Glicogênio/análise , Fósforo/isolamento & purificação , Polifosfatos/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , DNA Bacteriano/genética , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA